The pcrfit_single is responsible for the extraction of features from amplification curve data. The function can be used for custom functions for a paralleled analysis of amplification curve data. An example is given in the vignette.

pcrfit_single(x)

Arguments

x

is the data set containing the fluorescence amplitudes.

Value

Output Description

"eff"qPCR amplification efficiencynumeric
"cpD1"maximum of the first derivative curvenumeric
"cpD2"maximum of the second derivative curvenumeric
"cpD2_approx"maximum of the second derivative curve calculated by the approximate derivativenumeric
"cpD2_ratio"a value calculated from the ratio between cpD2 and cpD2_approxnumeric
"fluo"raw fluorescence value at the point defined by cpD2numeric
"init2"initial template fluorescence from an exponential modelnumeric
"top"takeoff point. When no top can be determined, the tob value is set to the first cycle number.numeric
"f.top"fluorescence at takeoff point. When no f.tdp can be determined, the f.tdp value is set to the RFU value at the first cycle number.numeric
"tdp"takes the maximum x fluorescence subtracted by reverse values of the fluorescence and calculates then the fake takeoff point. It is so to speak the take down point (tdp). When no tdp can be determined, the tdb value is set to the last cycle number.numeric
"f.tdp"fluorescence at tdp point. When no f.tdp can be determined, the f.tdp value is set to the RFU value at the last cycle number.numeric
"sliwin"PCR efficiency by the 'window-of-linearity' methodnumeric
"b_slope"Is the slope of the seven parameter modelnumeric
"b_model_param"Is the b model parameter of the five parameter modelnumeric
"c_model_param"Is the c model parameter of the five parameter modelnumeric
"d_model_param"Is the d model parameter of the five parameter modelnumeric
"e_model_param"Is the e model parameter of the five parameter modelnumeric
"f_model_param"Is the f model parameter of the five parameter modelnumeric
"f_intercept"Is the intercept of the seven parameter modelnumeric
"k1_model_param"Is the k1 model parameter of the seven parameter modelnumeric
"k2_model_param"Is the k2 model parameter of the seven parameter modelnumeric
"convInfo_iteratons"Number of iterations needed to fit the modelnumeric
"cpDdiff"absolute difference between cpD1 and cpD2numeric
"slope_bg"slope of the first cyclesnumeric
"intercept_bg"intercept of the first cyclesnumeric
"polyarea"area of a polygon given by the vertices in the vectors cycles and fluorescencenumeric
"cp_e.agglo"agglomerative hierarchical estimate for multiple change pointsnumeric
"cp_bcp"change point by Bayesian analysis methodsnumeric
"qPCRmodel"non-linear model determined for the analysisfactor
"amptester_shapiro"tests based on the Shapiro-Wilk normality test if the amplification curve is just noisebinary
"amptester_lrt"performs a cycle dependent linear regression and determines if the coefficients of determination deviates from a thresholdbinary
"amptester_rgt"Resids growth test (RGt) tests if fluorescence values in a linear phase are stablebinary
"amptester_tht"Threshold test (THt) takes the first 20 percent and the last 15 percent of any input data set and performs a Wilcoxon rank sum tests.binary
"amptester_slt"Signal level test compares 1. the signals by a robust "sigma" rule by median + 2 * mad and 2. by comparison of the signal/noise ratiobinary
"amptester_polygon"pco test (pco) determines if the points in an amplification curve (like a polygon, in particular non-convex polygons) are in a "clockwise" order.binary
"amptester_slope.ratio"SlR uses the inder function to find the approximated first derivative maximum, second derivative minimum and the second derivative maximum. These are used for a regression analysis with the corresponding fluorescence amplitude data.numeric
"minRFU"minimum of fluorescence amplitude (percentile 0.01)numeric
"maxRFU"maximum of fluorescence amplitude (percentile 0.99)numeric
"bg.start_norm"takes the start (cycle) the amplification curve background based on the bg.max function and normalizes it to the total cycle numbernumeric
"bg.stop"estimates the end (cycle) the amplification curve background based on the bg.max function and normalizes it to the total cycle numbernumeric
"amp.stop"estimates the end (cycle) of the amplification curve based in the bg.max function and normalizes it to the total cycle numbernumeric
"head2tail_ratio"numeric
"autocorellation"numeric
"mblrr_intercept_bg"numeric
"mblrr_slope_bg"numeric
"mblrr_cor_bg"numeric
"mblrr_intercept_pt"numeric
"mblrr_slope_pt"numeric
"mblrr_cor_pt"numeric
"amp_cor_MIC"numeric
"hookreg_hook"estimate of hook effect like curvaturebinary
"hookreg_hook_slope"estimate of slope of the hook effect like curvaturenumeric
"peaks_ratio"Takes the estimate approximate local minimums and maximums
"loglin_slope"slope determined by a linear model of the data points from the minimum and maximum of the second derivativenumeric
"cpD2_range"cycle difference between the maximum and the minimum of the second derivative curvenumeric
"sd_bg"shows the standard deviation of the fluorescence in the ground phasenumeric
"central_angle"shows the central angle calculated from the maxima and minima of the derivativesnumeric

Details

Details can be found in the vignette.

References

M. Febrero-Bande, M.O. de la Fuente, others, Statistical computing in functional data analysis: The R package fda.usc, Journal of Statistical Software. 51 (2012) 1--28. http://www.jstatsoft.org/v51/i04/

A.-N. Spiess, C. Deutschmann, M. Burdukiewicz, R. Himmelreich, K. Klat, P. Schierack, S. Roediger, Impact of Smoothing on Parameter Estimation in Quantitative DNA Amplification Experiments, Clinical Chemistry. 61 (2015) 379--388. doi:10.1373/clinchem.2014.230656.

S. Roediger, A. Boehm, I. Schimke, Surface Melting Curve Analysis with R, The R Journal. 5 (2013) 37--53. http://journal.r-project.org/archive/2013-2/roediger-bohm-schimke.pdf.

S. Roediger, M. Burdukiewicz, K.A. Blagodatskikh, P. Schierack, R as an Environment for the Reproducible Analysis of DNA Amplification Experiments, The R Journal. 7 (2015) 127--150. http://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf.

S. Pabinger, S. Roediger, A. Kriegner, K. Vierlinger, A. Weinhauusel, A survey of tools for the analysis of quantitative PCR (qPCR) data, Biomolecular Detection and Quantification. 1 (2014) 23--33. doi:10.1016/j.bdq.2014.08.002.

S. Roediger, M. Burdukiewicz, P. Schierack, chipPCR: an R package to pre-process raw data of amplification curves, Bioinformatics. 31 (2015) 2900--2902. doi:10.1093/bioinformatics/btv205.

See also

Examples

# Load the chipPCR package and analyze from the C126EG685 the first qPCR run # "A01" (column 2). library(chipPCR) res <- pcrfit_single(C126EG685[, 2])